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Artificial Intelligence (Al)

» Al Is a technology-based system involving various advanced tools and
networks that can mimic human intelligence.

» Al utilizes systems and software that can interpret and learn from the
Input data to make independent decisions for accomplishing specific
objectives.

» Al involves several method domains like reasoning, knowledge
representation, solution search, and machine learning (ML).

» A subfield of the ML is deep learning (DL), which engages artificial

neural networks (ANNS).
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Artificial Intelligence: Application areas

Any technique which enables computers to mimic human brain.
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It is simply a data analysis method that automates analytical model building using
algorithms that iteratively learn from data. Computers can identify hidden insights
without being explicitly programmed.
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It is a deeper
subset of Al that
processes data
and creates
patterns for
decision making
purposes. It
comprises
networks which
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learning from
unstructured
date.



Artificial Intelligence

» These comprise a set of interconnected sophisticated computing
elements involving ‘perceptons’ analogous to human biological

neurons, mimicking the transmission of electrical impulses In the

human brain.
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New York, USA).
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Artificial Intelligence in Drug Discovery
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Al In Drug Design & Synthesis

DESIGN

QSAR modeling/ADMET prediction
De novo molecular generation
Virtual Docking

ANALYZE

Data imputation

Informatics

In Drug Discovery
Cycle

MAKE

Synthesizability estimation
Synthetic route selection
Condition recommendation
Byproduct prediction

Route validation

Virtual enumeration
Automated optimization

TEST

Structural elucidation
Biological assay selection

FOUR CRUCIAL STAGES: 1. Design, 2. Synthesis, 3. Testing,
4. Analyzing of new drugs.




Al In Drug Design: Prediction tools for target protein structures
» AlphaFold: https://deepmind.com/blog/alphafold

It is based on deep neural network (DNN)
It is used to analyze the distance between the adjacent amino acids

and the corresponding angles of the peptide bonds.

» PotentialNet:-
https://pubs.acs.org/doi/full/10.1021/acscentsci.8b00507

It is based on neural network (NN).
It Is used to predict the binding affinity of the ligand.
» DeltaVina: https://github.com/chengwang88/deltavina

It is a scoring function for rescoring drug—ligand binding affinity.


https://deepmind.com/blog/alphafold
https://pubs.acs.org/doi/full/10.1021/acscentsci.8b00507
https://github.com/chengwang88/deltavina

Prediction tools for target protein structures: Conventional techniques
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Prediction tools for target protein structures: Recurrent Geometric network (RGN)
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 Protein sequences are fed one residue at a time to the computational

units of an RGN. [Cell Systems 2019, 8, 292].
« Based on these computations, torsional angles are predicted and fed

to geometric units.
« dRMSD is used to measure deviation from experimental structures,

serving as the signal for optimizing RGN.



Prediction of drug-protein interactions: (i) Random Forest (RF)

(i1) Support Vector Machine (SVM).

Drugbank Database
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Prediction of drug-protein interactions: (i) Random Forest (RF)

(i1) Support Vector Machine (SVM).

Predicted results for a model in RF

Dataset SE (RF/BGL) SP(RF/BGL) CO(RF/BGL) AUC(RF/BGL)
Enzyme 35.82%/57.40% 82.70%/99.50% 59.26%/-- 67.43/90.40
GPCR 80.31%/23.40% 55.64%/99.90% 67.98%/-- 72.95/89.90
lon channel 54.09%/27.10% 73.38%/99.60% 63.73%/— 66.58/85.10
Nuclear receptor 91.57%/14.80% 39.76%:/99.90% 65.66%/—— 82.29/84.30
Average 47.51%/— 74.93%/— 61.64%/—— 66.68/——

Dataset: DrugBank database
Descriptor: DRAGON
PROFEAT WEBSEVER
Random Forest algorithm
SE: sensitivity
SP: specificity
CO: compound-protein pairs
BGL.: Bipartite graph learning

Predicted results for top 5 scoring novel drug-target interactions

Protein name (UniProt ID) Drug generic name (DrugBank ID) Binding score
NAD(P)H dehydrogenase [quinone] 1 (P15559) Flavin-N7 protonated-adenine dinucleotide (DB02332) 0.996
NAD(P)H dehydrogenase [quinone] 1 (P15559) NADH (DB00157) 0.9%
Alcohol dehydrogenase [NADP+] (P14550) NADH (DB00157) 0.992
Prostaglandin G/H synthase 1 (P23219) Bromfenac (DB00963) 0.992
Prostaglandin G/H synthase 1 (P23219) D-allopyranose (DB03989) 0.990



Novel Target Prediction for an existing drug: MDMA
3,4-Methylene-dioxy-methamphetamine (MDMA)

Psychoactive drug

ST

Predicted top 5 scoring target proteins for the same drug MDMA

Protein name UniProt ID Binding score
Beta-1 adrenergic receptor P08588 0.820
Carbonic anhydrase 2 P00918 0.810
Prothrombin P00734 0.804
Alpha-2A adrenergic receptor P08913 0.802
Prostaglandin G/H synthase 2 P35354 0.800
Dipeptidyl peptidase 4 P27284 0.798



Novel Drug Prediction for an existing target:

Thymidine Kinase

Predicted top 10 scoring drugs for the same target: Thymidine kinase

DrugBank Binding

Drug generic name 1D score
NADH DB00157 0.870
Nicotinamide-Adenine-Dinuclectide DB01907 0.848
Adenosine-5"-Diphosphate DB03431 0.844
Guanosine-5"-Diphosphate DB04315 0.808
Acetate lon DB04184 0.792
Mesoheme DB02577 0.786
Heme DB03014 0.786
Idoxuridine DB00249 0.762
Pentostatin DB00552 0.656
1-Beta-Ribofuranosyl-1,3-Diazepinone DB03185 0.622

[PLoS One 2012, 7, e37608].



Software tools for Drug-Receptor Interaction Prediction
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[http://www.jci-bioinfo.cn/IiDrug-Target/]



Prediction of pharmacological activity/affinity of drugs

» DeepNeuralNetQSAR: https://qgithub.com/Merck/DeepNeuralNet-
SAR

It utilizes python-based tools and is used to detect molecular

activity of a compound.

» Neural graph fingerprint: https://github.com/HIPS/neural-fingerprint

It is used to predict the properties of novel molecules.

» DeepTox: www.bioinf.jku.at/research/DeepTox

Software that predicts the toxicity of 12 000 drugs

DeepDTA, PADME, WideDTA, and DeepAffinity are some DL
methods used to measure Drug-target binding affinity (DTBA).


https://github.com/Merck/DeepNeuralNet-QSAR
https://github.com/Merck/DeepNeuralNet-QSAR
https://github.com/HIPS/neural-fingerprint
http://www.bioinf.jku.at/research/DeepTox

PADME: A Deep Learning-based Framework for Drug-Target

Interaction Prediction

s PADME: Protein And Drug Molecule interaction prEdiction.

It Is used to predict real-valued interaction strength between
compounds and proteins.

*»» PADME takes both compound and protein information as inputs to
solve cold-target (problems involving target protein that never
appeared In the training set) or cold-drug problems.

¢ A study by Feng et al., integrated Molecular Graph Convolution
(MGC) for compound featurization with protein descriptors.

¢ Authors used multiple cross-validation split schemes and evaluation
metrics to measure the performance of PADME.

¢ The success of the PADME tool was demonstrated by taking an
example of androgen receptor (AR) against predicting the binding
affinity between various compounds.



Methodology
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(a) PADME-ECFP (extended connectivity finger print) architecture.
(b) PADME-GraphConv architecture.

Black dots represent omitted neurons and layers;
CIV:. Combined Input Vector.

Compound feature vectors generated using DNN; graph

representation of molecules, the atoms are denoted by nodes, while
the bonds are denoted by edges.



A case study: Androgen receptor (AR)

“ Ligands: US National Cancer Institute human tumour cell line
anticancer drug screen data (NCI60), totaling more than 100000.

“* PADME-ECFP and PADME-GraphConv trained on whole ToxCast
dataset.

% Average of their predictions were determined, known as averaged
model PADME-Ensemble.

“* Top 30 compounds are predicted to bind strongly with AR, out of that
4 compounds are selected as active.

[arXiv:1807.09741, 2008].
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Al In Synthesis of drugs
» Chemputer: https://zenodo.org/record/1481731

It helps to report procedure for chemical synthesis in
standardized format.

» DeepChem: https://github.com/deepchem/deepchem

It is a multilayer perception (MLP) model that uses a python-based
Al system to find a suitable candidate in drug discovery program.
» ORGANIC: https://github.com/aspuru-guzik-group/ORGANIC

A molecular generation tool that helps to create molecules with
desired properties.

» Chematica and ICSynth: Regularly used software tools In industries.


https://zenodo.org/record/1481731
https://github.com/deepchem/deepchem
https://github.com/aspuru-guzik-group/ORGANIC

Al In Synthesis of drugs
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Al In Synthesis of drugs: 1. Retrosynthesis

1. Retrosynthesis
a) Single-Step b) Tree Search

D In: target molecule
Y — 7 = A S 207 =
B Qut; reactants for
In: product Out: reactants

multiple steps

2. Condition Recommendation 3. Forward Reaction Prediction
Qut: conditions In: conditions
+ > 4 —_—— ?
0+ T o o+
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(1) Retrosynthesis can be broken into subproblems of (a) the generation of
retrosynthetic suggestions one step at a time and (b) the recursive use of the singe
step suggestions to identify full, multistep routes.

(2) Reaction conditions that will lead to a successful forward reaction must be
recommended.

(3) Reaction prediction of the possible products from a set of starting materials and
conditions for the proposed synthetic steps.



¢ Expert encoded rules (first wave-Al) and ML methods (second wave-
Al) are Al tools in synthesis.

¢ First wave-Al: Crafted knowledge

¢ Second wave-Al: Statistical methods

¢ Two categories of methods for scoring compounds by synthesizability:
simplified structure-based heuristics or full retrosynthetic tree
expansions.

“* A general procedure for the algorithmic extraction of reaction
templates from a reaction data set :
(1) identify the reaction center or changing atoms
(2) 1dentify atoms adjacent to the reaction center
(3) add generalized functional groups involved in the reaction.

¢ A single-step retrosynthetic recommender is sufficient to construct
routes for one-step reaction at a time.

» Similarly, it can be extended to derive synthetic route for multistep
organic synthesis using a tree search.

¢ Each step can produce thousands of precursors.



Retrosynthesis: ICSYNTH Software by InfoChem
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Retrosynthe3|s ICSYNTH Software by InfoChem
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Retrosynthetic analysis using ASKCOS software

Cl 0]
N
@fﬂ
Cl
R1 R2
A -H -H
8 -Me -H
9 -H -Me -
10 -H -H -Me -H

M-H H -H -Me

ASKCOS: It proposes the possible synthetic route based on the

NO,
$2.0/g
SM for 11 Br
Me
Mo Br

heterocycle
synthesis
(Bartoli reaction)

 —

NOT AVAILABLE

C-C, sp2-sp2
coupling

THP deprotection

(HO),B

N
$25.0/g
SM for 8

Me

ﬂ borylation

Me

|

HN

Br Br
(: ‘:L Me ( .:L
HMN HM
Me

$60.0/g
SM for 9

$81.0/g
SM for 10

availability of the starting material.




Al In Synthesis of drugs: 2. Reaction condition planning

Challenges in condition predictions:-

(1) Amounts, volumes, or concentrations

(2) Reaction times or kinetics

(3) Order of the addition of reagents and catalysts

0 Top ASKCOS 0

HO 12 Predicted Route
Suzuki 'l Pd catalysed
Cross-Coupling CH Insertion
HJ ; ;
LSZ102 ;
F

Optimized condition: Pd-catalyzed C—H activation, identified the
requirement for both high temperature and polar aprotic solvents
(DMF/DMA) in the top 3 proposed conditions. This was applied to a
diverse range of substrate starting materials and observed yields in the
range of 39—97%.
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Al In Synthesis of drugs: 3. Forward Reaction Prediction
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To ensure algorithmic synthesis design are robust and actionable
by anticipating, at least qualitatively, reaction products, forward
reaction predictive analysis generally conducted.

The feasibility of a reaction needs to be determined by searching
for similar transformations, reading the literature, and
determining If the synthetic method will generalize to the
substrates of interest.

Data-driven techniques can learn to perform the same
generalization when trained on a broad set of reactions: ML
Graph convolutional neural networks predict atom and bond
changes from starting materials to products.
Sequence-to-sequence models which predict product SMILES
(Simplified Molecular Input Line Entry System).

Other methods: make-on-demand virtual libraries based on
expert-defined reaction templates.



Challenges in Drug Discovery using Al

Companies who use Al technology for drug discovery has to go
through vigorous process to copyright their work so as to secure
patent rights.

Security Is also a major concern, as Al-driven personalized
medicine requires person’s genetic code (legal issues).

Faster computation will be required for handling big data and it is
said that in future the current supercomputers will be replaced by
quantum computers.

Still no success story where a compound generated through Al
made It to the market for public use.

Insilico medicine, a biotechnology company, proposed a novel
target involved in idiopathic pulmonary fibrosis and made its
novel inhibitor from scratch, through their Al-based tools.

The identified small molecule inhibitor has showed good efficacy
and applied for investigational new drug (IND) in Dec-2020.
Expected clinical trials will be late 2022 by that company.
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